Abnormal EEG Synchronization Correlates with Demyelination in Alzheimer's Disease

Détails

Ressource 1Demande d'une copieTélécharger: BIB_37EEA613EB0C.P001.pdf (14.48 [Ko])
Etat: Supprimée
Version: de l'auteur⸱e
ID Serval
serval:BIB_37EEA613EB0C
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Abnormal EEG Synchronization Correlates with Demyelination in Alzheimer's Disease
Titre de la conférence
OHBM 2009, 15th Annual Meeting of the Organization for Human Brain Mapping
Auteur⸱e⸱s
Knyazeva M., Fornari E., Jalili M., Meuli R., Maeder P.
Adresse
San Francisco, California, United-States, June 18-23, 2009
ISBN
1053-8119
Statut éditorial
Publié
Date de publication
2009
Peer-reviewed
Oui
Volume
47
Série
NeuroImage
Pages
S112
Langue
anglais
Résumé
Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.
Création de la notice
31/08/2009 17:47
Dernière modification de la notice
20/08/2019 14:26
Données d'usage