Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.

Détails

ID Serval
serval:BIB_37B3BDC1EC23
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.
Périodique
Analytical Chemistry
Auteur⸱e⸱s
Busam S., McNabb M., Wackwitz A., Senevirathna W., Beggah S., Meer J.R., Wells M., Breuer U., Harms H.
ISSN
0003-2700[print], 0003-2700[linking]
Statut éditorial
Publié
Date de publication
2007
Volume
79
Numéro
23
Pages
9107-9114
Langue
anglais
Résumé
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Mots-clé
Algorithms, Bacteria/genetics, Flow Cytometry, Fluorescence, Neural Networks (Computer)
Pubmed
Web of science
Création de la notice
01/02/2008 13:03
Dernière modification de la notice
20/08/2019 13:26
Données d'usage