Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption.

Détails

Ressource 1Télécharger: 34635645_BIB_3683F2C63090.pdf (1387.64 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_3683F2C63090
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption.
Périodique
Nature communications
Auteur⸱e⸱s
Froelicher D., Troncoso-Pastoriza J.R., Raisaro J.L., Cuendet M.A., Sousa J.S., Cho H., Berger B., Fellay J., Hubaux J.P.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Statut éditorial
Publié
Date de publication
11/10/2021
Peer-reviewed
Oui
Volume
12
Numéro
1
Pages
5910
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.
Mots-clé
Algorithms, Computer Security, Delivery of Health Care, Genome-Wide Association Study, Humans, Kaplan-Meier Estimate, Precision Medicine, Privacy, Survival Analysis
Pubmed
Web of science
Open Access
Oui
Création de la notice
19/10/2021 11:25
Dernière modification de la notice
21/11/2022 8:21
Données d'usage