Early processing in the human lateral occipital complex is highly responsive to illusory contours but not to salient regions.
Détails
Télécharger: BIB_3662A6733D8F.P001.pdf (2785.03 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_3662A6733D8F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Early processing in the human lateral occipital complex is highly responsive to illusory contours but not to salient regions.
Périodique
The European journal of neuroscience
ISSN
1460-9568 (Electronic)
ISSN-L
0953-816X
Statut éditorial
Publié
Date de publication
11/2009
Peer-reviewed
Oui
Volume
30
Numéro
10
Pages
2018-2028
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Mots-clé
Adult, Brain Mapping, Electroencephalography/methods, Evoked Potentials, Visual/physiology, Female, Form Perception/physiology, Humans, Image Processing, Computer-Assisted/methods, Magnetic Resonance Imaging/methods, Male, Occipital Lobe/blood supply, Occipital Lobe/physiology, Optical Illusions/physiology, Oxygen/blood, Pattern Recognition, Visual/physiology, Photic Stimulation/methods, Reaction Time/physiology, Young Adult
Pubmed
Web of science
Création de la notice
04/12/2009 10:10
Dernière modification de la notice
20/08/2019 13:24