Implementation of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue

Détails

ID Serval
serval:BIB_36287
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Implementation of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue
Titre de la conférence
Evolvable Systems: From Biology to Hardware: 6th International Conference, ICES 2005, Sitges, Spain, September 12-14, 2005. Proceedings
Auteur⸱e⸱s
Moreno J.M., Eriksson J., Iglesias J., Villa A.E.P.
Editeur
Springer
Adresse
Sitges, Spain
ISBN
978-3-540-28736-0
978-3-540-28737-7
Statut éditorial
Publié
Date de publication
2005
Peer-reviewed
Oui
Editeur⸱rice scientifique
Moreno J.M., Madrenas J., Cosp J.
Volume
3637
Série
Lecture Notes in Computer Science
Pages
188-197
Langue
anglais
Résumé
Recent experimental findings appear to confirm that the nature of the states governing synaptic plasticity is discrete rather than continuous. This means that learning models based on discrete dynamics have more chances to provide a ground basis for modelling the underlying mechanisms associated with plasticity processes in the brain. In this paper we shall present the physical implementation of a learning model for Spiking Neural Networks (SNN) that is based on discrete learning variables. After optimizing the model to facilitate its hardware realization it is physically mapped on the POEtic tissue, a flexible hardware platform for the implementation of bio-inspired models. The implementation estimates obtained show that is possible to conceive a large-scale implementation of the model able to handle real-time visual recognition tasks.
Web of science
Création de la notice
19/11/2007 11:10
Dernière modification de la notice
20/08/2019 14:23
Données d'usage