Brain aging patterns in a large and diverse cohort of 49,482 individuals.

Détails

ID Serval
serval:BIB_32E1621EA439
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Brain aging patterns in a large and diverse cohort of 49,482 individuals.
Périodique
Nature medicine
Auteur⸱e⸱s
Yang Z., Wen J., Erus G., Govindarajan S.T., Melhem R., Mamourian E., Cui Y., Srinivasan D., Abdulkadir A., Parmpi P., Wittfeld K., Grabe H.J., Bülow R., Frenzel S., Tosun D., Bilgel M., An Y., Yi D., Marcus D.S., LaMontagne P., Benzinger TLS, Heckbert S.R., Austin T.R., Waldstein S.R., Evans M.K., Zonderman A.B., Launer L.J., Sotiras A., Espeland M.A., Masters C.L., Maruff P., Fripp J., Toga A.W., O'Bryant S., Chakravarty M.M., Villeneuve S., Johnson S.C., Morris J.C., Albert M.S., Yaffe K., Völzke H., Ferrucci L., Nick Bryan R., Shinohara R.T., Fan Y., Habes M., Lalousis P.A., Koutsouleris N., Wolk D.A., Resnick S.M., Shou H., Nasrallah I.M., Davatzikos C.
ISSN
1546-170X (Electronic)
ISSN-L
1078-8956
Statut éditorial
Publié
Date de publication
10/2024
Peer-reviewed
Oui
Volume
30
Numéro
10
Pages
3015-3026
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.
Mots-clé
Humans, Brain/diagnostic imaging, Brain/pathology, Aging/pathology, Magnetic Resonance Imaging, Male, Female, Aged, Cohort Studies, Middle Aged, Atrophy/pathology, Life Style, Adult, Aged, 80 and over
Pubmed
Web of science
Création de la notice
19/08/2024 12:33
Dernière modification de la notice
26/10/2024 6:12
Données d'usage