Probabilistic inference of multi-Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction

Détails

ID Serval
serval:BIB_2F900B23FBC6
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Probabilistic inference of multi-Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction
Périodique
Water Resources Research
Auteur⸱e⸱s
Laloy E., Linde N., Jacques D., Vrugt J.A.
Statut éditorial
Publié
Date de publication
2015
Volume
51
Pages
4224-4243
Langue
anglais
Résumé
We present a Bayesian inversion method for the joint inference of high-dimensional multi-Gaussian hydraulic conductivity fields and associated geostatistical parameters from indirect hydrological data. We combine Gaussian process generation via circulant embedding to decouple the variogram from grid cell specific values, with dimensionality reduction by interpolation to enable Markov chain Monte Carlo (MCMC) simulation. Using the Matérn variogram model, this formulation allows inferring the conductivity values simultaneously with the field smoothness (also called Matérn shape parameter) and other geostatistical parameters such as the mean, sill, integral scales and anisotropy direction(s) and ratio(s). The proposed dimensionality reduction method systematically honors the underlying variogram and is demonstrated to achieve better performance than the Karhunen-Loève expansion. We illustrate our inversion approach using synthetic (error corrupted) data from a tracer experiment in a fairly heterogeneous 10,000-dimensional 2-D conductivity field. A 40-times reduction of the size of the parameter space did not prevent the posterior simulations to appropriately fit the measurement data and the posterior parameter distributions to include the true geostatistical parameter values. Overall, the posterior field realizations covered a wide range of geostatistical models, questioning the common practice of assuming a fixed variogram prior to inference of the hydraulic conductivity values. Our method is shown to be more efficient than sequential Gibbs sampling (SGS) for the considered case study, particularly when implemented on a distributed computing cluster. It is also found to outperform the method of anchored distributions (MAD) for the same computational budget.
Open Access
Oui
Création de la notice
27/06/2016 10:55
Dernière modification de la notice
20/08/2019 14:14
Données d'usage