Early white matter alterations in men predisposed to FXTAS revealed by MT imaging.

Détails

ID Serval
serval:BIB_2F715F287414
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Early white matter alterations in men predisposed to FXTAS revealed by MT imaging.
Titre de la conférence
OHBM 2010, 16th Annual Meeting of the Organization for Human Brain Mapping
Auteur⸱e⸱s
Fornari E., Battistella G., Maeder P., Niederhauser J., Gronchi A., Isidor N., Vingerhoets F., Jacquemont S.
Adresse
Barcelona, Spain, June 6-12, 2010
Statut éditorial
Publié
Date de publication
2010
Langue
anglais
Résumé
Introduction: The Fragile X - associated Tremor Ataxia Syndrome (FXTAS) is a recently described, and under-diagnosed, late onset (≈ 60y) neurodegenerative disorder affecting male carriers of a premutation in the Fragile X Mental Retardation 1 (FMR1) gene. The premutation is an CGG (Cytosine-Guanine-Guanine) expansion (55 to 200 CGG repeats) in the proximal region of the FMR1 gene.
Patients with FXTAS primarily present with cerebellar ataxia and intention tremor. Neuroradiological features of FXTAS include prominent white matter disease in the periventricular, subcortical, middle cerebellar peduncles and deep white matter of the cerebellum on T2-weighted or FLAIR MR imaging (Jacquemmont 2007, Loesch 2007, Brunberg 2002, Cohen 2006). We hypothesize that a significant white matter alteration is present in younger individuals many years prior to clinical symptoms and/or the presence of visible lesions on conventional MR sequences and might be detectable by magnetization transfer (MT) imaging.
Methods: Eleven asymptomatic premutation carriers (mean age = 55 years) and seven intra-familial controls participated to the study. A standardized neurological examination was performed on all participants and a neuropsychological evaluation was carried out before MR scanning performed on a 3T Siemens Trio. The protocol included a sagittal T1-weighted 3D gradient-echo sequence (MPRAGE, 160 slices, 1 mm^3 isotropic voxels) and a gradient-echo MTI (FA 30, TE 15, matrix size 256*256, pixel size 1*1 mm, 36 slices (thickness 2mm), MT pulse duration 7.68 ms, FA 500, frequency offset 1.5 kHz). MTI was performed by acquiring consecutively two set of images; first with and then without the MT saturation pulse. MT images were coregistered to the T1 acquisition. The MTR for every intracranial voxel was calculated as follows: MTR = (M0 - MS)/M0*100%,
creating a MTR map for each subject.
As first analysis, the whole white matter (WM) was used to mask the MTR image in order to create an histogram of the MTR distribution in the whole tissue class over the two groups examined. Then, for each subject, we performed a segmentation and parcellation of the brain by means of Freesurfer software, starting from the high resolution T1-weighted anatomical acquisition. Cortical parcellations was used to assign a label to the underlying white matter by the construction of a Voronoi diagram in the WM voxels of the MR volume based on distance to the nearest cortical parcellation label. This procedure allowed us to subdivide the cerebral WM in 78 ROIs according to the cortical parcellation (see example in Fig 1). The cerebellum, by the same procedure, was subdivided in 5 ROIs (2 per each hemisphere and one corresponding to the brainstem).
For each subject, we calculated the mean value of MTR within each ROI and averaged over controls and patients. Significant differences between the two groups were tested using a two sample T-test (p<0.01).
Results: Neurological examination showed that no patient met the clinical criteria of Fragile X Tremor and Ataxia Syndrome yet. Nonetheless, premutation carriers showed some subtle neurological signs of the disorder. In fact, premutation carriers showed a significant increase of tremor (CRST, T-test p=0.007) and increase of ataxia (ICARS, p=0.004) when compared to controls. The neuropsychological evaluation was normal in both groups.
To obtain general characterizations of myelination for each subject and premutation carriers, we first computed the distribution of MTR values across the total white matter volume and averaged for each group. We tested the equality of the two distributions with the non parametric Kolmogorov-Smirnov test and we rejected the null-hypothesis at a p=0.03 (fig. 2). As expected, when comparing the asymptomatic permutation carriers with control subjects, the peak value and peak position of the MTR values within the whole WM were decreased and the width of the distribution curve was increased (p<0.01). These three changes point to an alteration of the global myelin status of the premutation carriers.
Subsequently, to analyze the regional myelination and white matter integrity of the same group, we performed a ROI analysis of MTR data.
The ROI-based analysis showed a decrease of mean MTR value in premutation carriers compared to controls in bilateral orbito-frontal and inferior frontal WM, entorhinal and cingulum regions and cerebellum (Fig 3). The detection of these differences in these regions failed with other conventional MR techniques.
Conclusions: These preliminary data confirm that in premutation carriers, there are indeed alterations in "normal appearing white matter" (NAWM) and these alterations are visible with the MT technique.
These results indicate that MT imaging may be a relevant approach to detect both global and local alterations within NAWM in "asymptomatic" carriers of premutations in the Fragile X Mental Retardation 1 (FMR1) gene. The sensitivity of MT in the detection of these alterations might point towards a specific physiopathological mechanism linked to an underlying myelin disorder. ROI-based analyses show that the frontal, parahippocampal and cerebellar regions are already significantly affected before the onset of symptoms. A larger sample will allow us to determine the minimum CGG expansion and age associated with these subclinical white matter alterations.
Création de la notice
16/02/2011 11:11
Dernière modification de la notice
20/08/2019 14:13
Données d'usage