Functional hypoxia reduces mitochondrial calcium uptake.

Détails

ID Serval
serval:BIB_2E8283116312
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Functional hypoxia reduces mitochondrial calcium uptake.
Périodique
Redox biology
Auteur⸱e⸱s
Donnelly C., Komlódi T., Cecatto C., Cardoso LHD, Compagnion A.C., Matera A., Tavernari D., Campiche O., Paolicelli R.C., Zanou N., Kayser B., Gnaiger E., Place N.
ISSN
2213-2317 (Electronic)
ISSN-L
2213-2317
Statut éditorial
Publié
Date de publication
05/2024
Peer-reviewed
Oui
Volume
71
Pages
103037
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.e., when intracellular O <sub>2</sub> levels limit mitochondrial respiration) are relayed by the electron transfer system to impact mitochondrial adaption and remodeling after hypoxic exposure remains poorly defined. This is largely due to challenges integrating findings under controlled and defined O <sub>2</sub> levels in studies connecting functions of isolated mitochondria to humans during physical exercise. Here we present experiments under conditions of hypoxia in isolated mitochondria, myotubes and exercising humans. Performing steady-state respirometry with isolated mitochondria we found that oxygen limitation of respiration reduced electron flow and oxidative phosphorylation, lowered the mitochondrial membrane potential difference, and decreased mitochondrial calcium influx. Similarly, in myotubes under functional hypoxia mitochondrial calcium uptake decreased in response to sarcoplasmic reticulum calcium release for contraction. In both myotubes and human skeletal muscle this blunted mitochondrial adaptive responses and remodeling upon contractions. Our results suggest that by regulating calcium uptake the mitochondrial electron transfer system is a hub for coordinating cellular adaption under functional hypoxia.
Mots-clé
Humans, Calcium/metabolism, Oxygen Consumption/physiology, Cell Respiration, Hypoxia/metabolism, Muscle, Skeletal/metabolism, Oxygen/metabolism, Coenzyme Q, Exercise, Membrane potential, Respirometry, Skeletal muscle
Pubmed
Open Access
Oui
Création de la notice
01/03/2024 14:11
Dernière modification de la notice
03/04/2024 7:08
Données d'usage