RXR: from partnership to leadership in metabolic regulations.
Détails
ID Serval
serval:BIB_2C80CA7FEE94
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
RXR: from partnership to leadership in metabolic regulations.
Périodique
Vitamins and Hormones
ISSN
0083-6729[print], 0083-6729[linking]
Statut éditorial
Publié
Date de publication
2007
Peer-reviewed
Oui
Volume
75
Pages
1-32
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Review
Publication Status: ppublish
Publication Status: ppublish
Résumé
Vitamin A signaling occurs through nuclear receptors recognizing diverse forms of retinoic acid (RA). The retinoic acid receptors (RARs) bind all-trans RA and its 9-cis isomer (9-cis RA). They convey most of the activity of RA, particularly during embryogenesis. The second subset of receptors, the rexinoid receptors (RXRs), binds 9-cis RA only. However, RXRs are obligatory DNA-binding partners for a number of nuclear receptors, broadening the spectrum of their biological activity to the corresponding nuclear receptor-signaling pathways. The present chapter more particularly focuses on RXR-containing transcriptional complexes for which RXR is not only a structural component necessary for DNA binding but also acts as a ligand-activated partner. After positioning RXR among the nuclear receptor superfamily in the first part, we will give an overview of three major signaling pathways involved in metabolism, which are sensitive to RXR activation: LXR:RXR, FXR:RXR, and PPAR:RXR. The third and last part is focused on RXR signaling and its potential role in metabolic regulation. Indeed, while the nature of the endogenous ligand for RXR is still in question, as we will discuss herein, a better understanding of RXR activities is necessary to envisage the potential therapeutic applications of synthetic RXR ligands.
Mots-clé
Animals, Humans, Retinoid X Receptors/metabolism, Retinoid X Receptors/physiology, Signal Transduction/physiology, Transcription Factors/metabolism, Transcription Factors/physiology, Up-Regulation/physiology
Pubmed
Web of science
Création de la notice
24/01/2008 15:26
Dernière modification de la notice
20/08/2019 13:11