Microenvironmental reorganization in brain tumors following radiotherapy and recurrence revealed by hyperplexed immunofluorescence imaging.

Détails

Ressource 1Télécharger: 38622132.pdf (5727.55 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_2A3F2605E502
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Microenvironmental reorganization in brain tumors following radiotherapy and recurrence revealed by hyperplexed immunofluorescence imaging.
Périodique
Nature communications
Auteur⸱e⸱s
Watson S.S., Duc B., Kang Z., de Tonnac A., Eling N., Font L., Whitmarsh T., Massara M., Bodenmiller B., Hausser J., Joyce J.A.
Collaborateur⸱rice⸱s
iMAXT Consortium
Contributeur⸱rice⸱s
Joyce J.A., Watson S.S., Whitmarsh T., Bodenmiller B.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Statut éditorial
Publié
Date de publication
15/04/2024
Peer-reviewed
Oui
Volume
15
Numéro
1
Pages
3226
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.
Mots-clé
Animals, Mice, Proteomics, Brain Neoplasms/diagnostic imaging, Brain Neoplasms/radiotherapy, Brain Neoplasms/pathology, Glioblastoma/diagnostic imaging, Glioblastoma/radiotherapy, Glioblastoma/pathology, Brain/pathology, Fluorescent Antibody Technique, Tumor Microenvironment
Pubmed
Web of science
Open Access
Oui
Création de la notice
19/04/2024 9:24
Dernière modification de la notice
07/05/2024 7:16
Données d'usage