Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout.
Détails
Télécharger: 26462562_BIB_29D399811938.pdf (337.35 [Ko])
Etat: Public
Version: Final published version
Etat: Public
Version: Final published version
ID Serval
serval:BIB_29D399811938
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout.
Périodique
Arthritis Research and Therapy
ISSN
1478-6362 (Electronic)
ISSN-L
1478-6354
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
17
Pages
288
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't Publication Status: epublish
Résumé
INTRODUCTION: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout.
METHODS: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set.
RESULTS: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8.
CONCLUSION: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β - the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
METHODS: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set.
RESULTS: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8.
CONCLUSION: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β - the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
Mots-clé
Adolescent, Adult, Aged, Aged, 80 and over, Antigens, CD14/genetics, CARD Signaling Adaptor Proteins/genetics, Child, Europe, Female, Genetic Predisposition to Disease/genetics, Genotype, Gout/genetics, Gout/immunology, Humans, Inflammasomes/genetics, Interleukin-1beta/genetics, Male, Middle Aged, Neoplasm Proteins/genetics, New Zealand, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Polynesia, Young Adult
Pubmed
Web of science
Open Access
Oui
Création de la notice
03/11/2015 17:29
Dernière modification de la notice
20/08/2019 13:09