Interactive Evolving Recurrent Neural Networks Are Super-Turing Universal
Détails
ID Serval
serval:BIB_280341840A0F
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Interactive Evolving Recurrent Neural Networks Are Super-Turing Universal
Titre de la conférence
Artificial Neural Networks and Machine Learning – ICANN 2014
Editeur
Springer International Publishing
Adresse
Hamburg, Germany
ISBN
978-3-319-11178-0
978-3-319-11179-7
978-3-319-11179-7
ISSN
0302-9743
1611-3349
1611-3349
Statut éditorial
Publié
Date de publication
2014
Peer-reviewed
Oui
Volume
8681
Série
Lecture Notes in Computer Science (LNCS)
Pages
57-64
Langue
anglais
Résumé
Understanding the dynamical and computational capabilities of neural models represents an issue of central importance. In this context, recent results show that interactive evolving recurrent neural networks are super-Turing, irrespective of whether their synaptic weights are rational or real. We extend these results by showing that interactive evolving recurrent neural networks are not only super-Turing, but also capable of simulating any other possible interactive deterministic system. In this sense, interactive evolving recurrent neural networks represents a super-Turing universal model of computation, irrespective of whether their synaptic weights are rational or real.
Mots-clé
evolving recurrent neural networks, neural computation, interactive computation, analog computation, Turing machines with advice, super-Turing
Création de la notice
04/08/2017 8:15
Dernière modification de la notice
21/08/2019 5:16