Parallel Local Search on GPU

Détails

Ressource 1Télécharger: rapport-local_search.pdf (1563.99 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_267BCDE50466
Type
Rapport: document publié par une institution, habituellement élément d'une série.
Collection
Publications
Titre
Parallel Local Search on GPU
Auteur⸱e⸱s
Luong Thé Van, Melab Nouredine, Talbi El-Ghazali
Détails de l'institution
INRIA
Date de publication
2009
Langue
anglais
Résumé
Local search algorithms are a class of algorithms to solve complex optimization problems in science and industry. Even if these efficient iterative methods allow to significantly reduce the computational time of the solution exploration space, the iterative process remains costly when very large problem instances are dealt with. As a solution, graphics processing units (GPUs) represent an efficient alternative for calculations instead of traditional CPU. This paper presents a new methodology to design and implement local search algorithms on GPU. Methods such as tabu search, hill climbing or iterated local search present similar concepts that can be parallelized on GPU and then a general cooperative model can be highlighted. In addition, this model can be extended with a hybrid multi-core and multi-GPU approach for multiple local search methods such as multistart. The conclusions from both GPU and multiGPU experiments indicate significant speed-ups compared to CPU approaches.
Mots-clé
Metaheuristics GPU
Création de la notice
02/03/2023 19:21
Dernière modification de la notice
02/03/2023 19:22
Données d'usage