Challenges in microbial ecology: building predictive understanding of community function and dynamics.

Détails

Ressource 1Télécharger: ismej201645a.pdf (2038.46 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_248C690340DC
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Challenges in microbial ecology: building predictive understanding of community function and dynamics.
Périodique
The ISME Journal
Auteur⸱e⸱s
Widder S., Allen R.J., Pfeiffer T., Curtis T.P., Wiuf C., Sloan W.T., Cordero O.X., Brown S.P., Momeni B., Shou W., Kettle H., Flint H.J., Haas A.F., Laroche B., Kreft J.U., Rainey P.B., Freilich S., Schuster S., Milferstedt K., van der Meer J.R., Groβkopf T., Huisman J., Free A., Picioreanu C., Quince C., Klapper I., Labarthe S., Smets B.F., Wang H., Soyer O.S.
Collaborateur⸱rice⸱s
Isaac Newton Institute Fellows
ISSN
1751-7370 (Electronic)
ISSN-L
1751-7362
Statut éditorial
Publié
Date de publication
2016
Peer-reviewed
Oui
Volume
10
Numéro
11
Pages
2557-2568
Langue
anglais
Résumé
The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model-experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.

Pubmed
Web of science
Open Access
Oui
Création de la notice
09/04/2016 15:10
Dernière modification de la notice
20/08/2019 13:02
Données d'usage