Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT.

Détails

ID Serval
serval:BIB_238771614D11
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT.
Périodique
Head and neck tumor segmentation and outcome prediction
Auteur⸱e⸱s
Andrearczyk V., Oreiller V., Abobakr M., Akhavanallaf A., Balermpas P., Boughdad S., Capriotti L., Castelli J., Le Rest C.C., Decazes P., Correia R., El-Habashy D., Elhalawani H., Fuller C.D., Jreige M., Khamis Y., La Greca A., Mohamed A., Naser M., Prior J.O., Ruan S., Tanadini-Lang S., Tankyevych O., Salimi Y., Vallières M., Vera P., Visvikis D., Wahid K., Zaidi H., Hatt M., Depeursinge A.
Statut éditorial
Publié
Date de publication
2023
Peer-reviewed
Oui
Volume
13626
Pages
1-30
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSC <sub>agg</sub> ) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.
Mots-clé
Challenge, Deep learning, Head and neck cancer, Machine learning, Medical imaging, Radiomics, Segmentation
Pubmed
Création de la notice
23/05/2023 13:19
Dernière modification de la notice
19/07/2023 5:55
Données d'usage