Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism.

Détails

ID Serval
serval:BIB_22635
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism.
Périodique
European Journal of Neuroscience
Auteur⸱e⸱s
Petit J.M., Tobler I., Allaman I., Borbély A.A., Magistretti P.J.
ISSN
0953-816X
Statut éditorial
Publié
Date de publication
2002
Volume
16
Numéro
6
Pages
1163-1167
Langue
anglais
Résumé
Replenishment of brain glycogen stores depleted during waking has been suggested to constitute one of the functions of sleep [Benington, J. H. & Heller H. C. (1995) Prog. Neurobiol., 45, 347]. We have tested the hypothesis that the level of expression of enzymes involved in glycogen metabolism could undergo variations throughout the sleep-waking or rest-activity cycle, and after 6 h of 'gentle' total sleep deprivation in mice. Specifically, we determined the variations in mRNAs coding for protein targeting to glycogen (PTG), glycogen synthase and glycogen phosphorylase, all considered as key regulators of glycogen metabolism. Glycogen synthase and glycogen phosphorylase mRNAs exhibited significant variations throughout the light-dark cycle with a maximum at the middle of the light period and a minimum at the middle of the dark period. Following sleep deprivation, a two-fold increase in PTG mRNA and a decrease of mRNAs encoding glycogen synthase and glycogen phosphorylase were observed. These transcriptional events have functional consequences as the activity of glycogen synthase was increased 2.5-fold indicating a stimulating effect of sleep deprivation on glycogen synthesis. These results indicate that (i) expression of genes related to brain glycogen metabolism exhibit variations throughout the sleep-waking or rest-activity cycle and (ii) given the almost selective localization of glycogen to astrocytes, these cells might participate in the regulation of sleep.
Mots-clé
Animals, Brain/enzymology, Circadian Rhythm/genetics, Gene Expression Regulation, Enzymologic/genetics, Glycogen/metabolism, Glycogen Phosphorylase/genetics, Glycogen Synthase/genetics, Mice, Mice, Inbred Strains, RNA, Messenger/metabolism, Sleep/genetics, Sleep Deprivation/enzymology, Sleep Deprivation/genetics, Up-Regulation/genetics, Wakefulness/genetics
Pubmed
Web of science
Création de la notice
19/11/2007 13:17
Dernière modification de la notice
20/08/2019 13:59
Données d'usage