Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents

Détails

ID Serval
serval:BIB_21C68DB3848B
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents
Périodique
Antimicrobial Agents and Chemotherapy
Auteur⸱e⸱s
Favre  B., Ryder  N. S.
ISSN
0066-4804 (Print)
Statut éditorial
Publié
Date de publication
02/1996
Volume
40
Numéro
2
Pages
443-7
Notes
Comparative Study
Journal Article --- Old month value: Feb
Résumé
Squalene epoxidase (SE) is the primary target of the allylamine antimycotic agents terbinafine and naftifine and also of the thiocarbamates. Although all of these drugs are employed primarily in dermatological therapy, SE from dermatophyte fungi has not been previously investigated. We report here the biochemical characterization of SE activity from Trichophyton rubrum and the effects of terbinafine and other inhibitors. Microsomal SE activity from T. rubrum was not dependent on soluble cytoplasmic factors but had an absolute requirement for NADPH or NADH and was stimulated by flavin adenine dinucleotide. Kinetic analyses revealed that under optimal conditions the Km for squalene was 13 microM and its Vmax was 0.71 nmol/h/mg of protein. Terbinafine was the most potent inhibitor tested, with a 50% inhibitory concentration (IC50) of 15.8 nM. This inhibition was noncompetitive with regard to the substrate squalene. A structure-activity relationship study with some analogs of terbinafine indicated that the tertiary amino structure of terbinafine was crucial for its high potency, as well as the tert-alkyl side chain. Naftifine had a lower potency (IC50, 114.6 nM) than terbinafine. Inhibition was also demonstrated by the thiocarbamates tolciclate (IC50, 28.0 nM) and tolnaftate (IC50, 51.5 nM). Interestingly, the morpholine amorolfine also displayed a weak but significant effect (IC50, 30 microM). T. rubrum SE was only slightly more sensitive (approximately twofold) to terbinafine inhibition than was the Candida albicans enzyme. Therefore, this difference cannot fully explain the much higher susceptibility (> or = 100-fold) of dermatophytes than of yeasts to this drug. The sensitivity to terbinafine of ergosterol biosynthesis in whole cells of T. rubrum (IC50, 1.5 nM) is 10-fold higher than that of SE activity, suggesting that the drug accumulates in the fungus.
Mots-clé
Antifungal Agents/*pharmacology Candida albicans/enzymology Chromatography, Thin Layer Enzyme Inhibitors/*pharmacology Morpholines/pharmacology Naphthalenes/*pharmacology Oxygenases/*antagonists & inhibitors/*isolation & purification Squalene Monooxygenase Thiocarbamates/pharmacology Trichophyton/*enzymology
Pubmed
Web of science
Création de la notice
25/01/2008 17:32
Dernière modification de la notice
20/08/2019 13:58
Données d'usage