Trans- and Cis-Water Reactivities in d(6) Octahedral Ruthenium(II) Pentaaqua Complexes: Experimental and Density Functional Theory Studies(1)(,)(2).

Détails

ID Serval
serval:BIB_212
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Trans- and Cis-Water Reactivities in d(6) Octahedral Ruthenium(II) Pentaaqua Complexes: Experimental and Density Functional Theory Studies(1)(,)(2).
Périodique
Inorganic Chemistry
Auteur(s)
Aebischer N., Sidorenkova E., Ravera M., Laurenczy G., Osella D., Weber J., Merbach A.E.
ISSN
1520-510X[electronic]
Statut éditorial
Publié
Date de publication
1997
Volume
36
Numéro
26
Pages
6009-6020
Langue
anglais
Résumé
The hexaaqua complex of ruthenium(II) represents an ideal starting material for the synthesis of isostructural compounds with a [Ru(H(2)O-ax)(H(2)O-eq)(4)L](2+) general formula. We have studied a series of complexes, where L = H(2)O, MeCN, Me(2)SO, H(2)C=CH(2), CO, and F(2)C=CH(2). We have evaluated the effect of L on the cyclic voltammetric response, on the rate and mechanism of exchange reaction of the water molecules, and on the structures calculated with the density functional theory (DFT). As expected, the formal redox potential, E degrees '(+2/+3), increases with the pi-accepting capabilities of the ligands. For L = N(2), the oxidation to Ru(III) is followed by a fast substitution of dinitrogen by a solvent molecule, revealing the poor stability of the Ru(III)-N(2) bond. The water exchange reactions have been followed by (17)O NMR spectroscopy. The variable-pressure and variable-temperature kinetic studies made on selected examples are all in accordance with a dissociative activation mode for exchange. The positive activation volumes obtained for the axial and equatorial water exchange reactions on [Ru(H(2)O)(5)(H(2)C=CH(2))](2+) (DeltaV(ax)() and DeltaV(eq)() = +6.5 +/- 0.5 and +6.1 +/- 0.2 cm(3) mol(-)(1)) are the strongest evidence of this conclusion. The increasing cis-effect series was established according to the lability of the equatorial water molecules and is as follows: F(2)C=CH(2) congruent with CO < Me(2)SO < N(2) < H(2)C=CH(2) < MeCN < H(2)O. The increase of the lability is accompanied by a decrease of the E degrees ' values, but no change was found in the calculated Ru-H(2)O(eq) bond lengths. The increasing trans-effect series, established from the lability of the axial water molecule, is the following: N(2) << MeCN < H(2)O < CO < Me(2)SO < H(2)C=CH(2) < F(2)C=CH(2). A variation of the Ru-H(2)O(ax) bond lengths is observed in the calculated structures. However, the best correlation is found between the lability and the calculated Ru-H(2)O(ax) bond energies. It appears, also, that a decrease of the electronic density along the Ru-O(ax) bond and the increase of the lability can be related to an increase of the pi-accepting capability of the ligand. For L = N(2), the calculations have shown that the Ru(II)-N(2) bond is weak. Consequently, the water exchange reaction proceeds through a different mechanism, where first the N(2) ligand is substituted by one water molecule to produce the hexaaqua complex of Ru(II). The water exchange takes place on this compound before re-formation of the [Ru(H(2)O)(5)N(2)](2+) complex.
Pubmed
Web of science
Création de la notice
19/11/2007 9:44
Dernière modification de la notice
20/08/2019 12:57
Données d'usage