Better-quasi-order : ideals and spaces

Détails

Demande d'une copie
ID Serval
serval:BIB_1AA0D581CC86
Type
Thèse: thèse de doctorat.
Collection
Publications
Institution
Titre
Better-quasi-order : ideals and spaces
Auteur⸱e⸱s
Pequignot Y.
Directeur⸱rice⸱s
Duparc J., Pin J.-É.
Détails de l'institution
Université de Lausanne, Faculté des hautes études commerciales
Adresse
Faculté des hautes études commerciales (HEC) Université de Lausanne CH-1015 Lausanne SUISSE
Statut éditorial
Acceptée
Date de publication
2015
Langue
anglais
Nombre de pages
157
Résumé
This thesis deals with combinatorics, order theory and descriptive set theory.
The first contribution is to the theory of well-quasi-orders (wqo) and better-quasi-orders (bqo). The main result is the proof of a conjecture made by Maurice Pouzet in 1978 his thèse d'état which states that any wqo whose ideal completion remainder is bqo is actually bqo. Our proof relies on new results with both a combinatorial and a topological flavour concerning maps from a front into a compact metric space. The second contribution is of a more applied nature and deals with topological spaces. We define a quasi-order on the subsets of every second countable To topological space in a way that generalises the Wadge quasi-order on the Baire space, while extending its nice properties to virtually all these topological spaces.
The Wadge quasi-order of reducibility by continuous functions is wqo on Borei subsets of the Baire space, this quasi-order is however far less satisfactory for other important topological spaces such as the real line, as Hertling, Ikegami and Schlicht notably observed. Some authors have therefore studied reducibility with respect to some classes of discontinuous functions to remedy this situation. We propose instead to keep continuity but to weaken the notion of function to that of relation. Using the notion of admissible representation studied in Type-2 theory of effectivity, we define the quasi-order of reducibility by relatively continuous relations. We show that this quasi-order both refines the classical hierarchies of complexity and is wqo on the Borei subsets of virtually every second countable To space - including every (quasi-)Polish space.
--
Cette thèse se situe dans les domaines de la combinatoire, de la théorie des ordres et de la théorie descriptive.
La première contribution concerne la théorie des bons quasi-ordres (wqo) et des meilleurs quasi-ordres (bqo). Le résultat principal est la preuve d'une conjecture, énoncée par Pouzet en 1978 dans sa thèse d'état, qui établit que tout wqo dont l'ensemble des idéaux non principaux ordonnés par inclusion forme un bqo est alors lui-même un bqo.
La preuve repose sur de nouveaux résultats, qui allient la combinatoire et la topologie, au sujet des fonctions d'un front vers un espace métrique compact.
La seconde contribution de cette thèse traite de la complexité topologique dans le cadre des espaces To à base dénombrable. Dans le cas de l'espace de Baire, le quasi-ordre de Wadge est un wqo sur les sous-ensembles Boréliens qui a suscité énormément d'intérêt. Cependant cette relation de réduction par fonctions continues s'avère bien moins satisfaisante pour d'autres espaces d'importance tels que la droite réelle, comme l'ont fait notamment remarquer Hertling, Schlicht et Ikegami. Nous proposons de conserver la continuité et d'affaiblir la notion de fonction pour celle de relation. Pour ce faire, nous utilisons la notion de représentation admissible étudiée en « Type-2 theory of effectivity » initiée par Weihrauch. Nous introduisons alors le quasi-ordre de réduction par relations relativement continues et montrons que celui-ci à la fois raffine les hiérarchies classiques de complexité topologique et forme un wqo sur les sous-ensembles Boréliens de chaque espace quasi-Polonais.
Création de la notice
31/08/2015 11:15
Dernière modification de la notice
20/08/2019 12:51
Données d'usage