Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer's disease.

Détails

Ressource 1Télécharger: 10144.full.pdf (1680.99 [Ko])
Etat: Public
Version: Final published version
ID Serval
serval:BIB_1A8C32B395F0
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer's disease.
Périodique
The Journal of neuroscience
Auteur⸱e⸱s
Auffret A., Gautheron V., Repici M., Kraftsik R., Mount H.T., Mariani J., Rovira C.
ISSN
1529-2401 (Electronic)
ISSN-L
0270-6474
Statut éditorial
Publié
Date de publication
12/08/2009
Peer-reviewed
Oui
Volume
29
Numéro
32
Pages
10144-10152
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Mots-clé
Aging, Alzheimer Disease/genetics, Animals, Cell Death, Dendritic Spines/genetics, Dendritic Spines/physiology, Disease Models, Animal, Hippocampus/cytology, Hippocampus/physiology, Humans, In Vitro Techniques, Long-Term Potentiation/genetics, Long-Term Potentiation/physiology, Male, Mice, Mice, Transgenic, Mutation, Missense, Neuronal Plasticity/genetics, Neuronal Plasticity/physiology, Neurons/cytology, Neurons/physiology, Presenilin-1/genetics, Presenilin-1/metabolism, Receptors, N-Methyl-D-Aspartate/metabolism, Synapses/genetics, Synapses/physiology, Synaptic Transmission/genetics, Synaptic Transmission/physiology
Pubmed
Web of science
Open Access
Oui
Création de la notice
06/01/2010 14:25
Dernière modification de la notice
20/08/2019 13:51
Données d'usage