Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors.

Détails

ID Serval
serval:BIB_18767EF91B86
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors.
Périodique
Plant Physiology
Auteur⸱e⸱s
Hocq L., Sénéchal F., Lefebvre V., Lehner A., Domon J.M., Mollet J.C., Dehors J., Pageau K., Marcelo P., Guérineau F., Kolšek K., Mercadante D., Pelloux J.
ISSN
1532-2548 (Electronic)
ISSN-L
0032-0889
Statut éditorial
Publié
Date de publication
2017
Peer-reviewed
Oui
Volume
173
Numéro
2
Pages
1075-1093
Langue
anglais
Résumé
The fine-tuning of the degree of methylesterification of cell wall pectin is a key to regulating cell elongation and ultimately the shape of the plant body. Pectin methylesterification is spatiotemporally controlled by pectin methylesterases (PMEs; 66 members in Arabidopsis [Arabidopsis thaliana]). The comparably large number of proteinaceous pectin methylesterase inhibitors (PMEIs; 76 members in Arabidopsis) questions the specificity of the PME-PMEI interaction and the functional role of such abundance. To understand the difference, or redundancy, between PMEIs, we used molecular dynamics (MD) simulations to predict the behavior of two PMEIs that are coexpressed and have distinct effects on plant development: AtPMEI4 and AtPMEI9. Simulations revealed the structural determinants of the pH dependence for the interaction of these inhibitors with AtPME3, a major PME expressed in roots. Key residues that are likely to play a role in the pH dependence were identified. The predictions obtained from MD simulations were confirmed in vitro, showing that AtPMEI9 is a stronger, less pH-independent inhibitor compared with AtPMEI4. Using pollen tubes as a developmental model, we showed that these biochemical differences have a biological significance. Application of purified proteins at pH ranges in which PMEI inhibition differed between AtPMEI4 and AtPMEI9 had distinct consequences on pollen tube elongation. Therefore, MD simulations have proven to be a powerful tool to predict functional diversity between PMEIs, allowing the discovery of a strategy that may be used by PMEIs to inhibit PMEs in different microenvironmental conditions and paving the way to identify the specific role of PMEI diversity in muro.

Pubmed
Web of science
Open Access
Oui
Création de la notice
10/04/2017 8:57
Dernière modification de la notice
20/08/2019 12:48
Données d'usage