Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4).

Détails

ID Serval
serval:BIB_17578297E6D1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4).
Périodique
Journal of Bacteriology
Auteur⸱e⸱s
Laemmli C.M., Leveau J.H., Zehnder A.J., van der Meer J.R.
ISSN
0021-9193 (Print)
ISSN-L
0021-9193
Statut éditorial
Publié
Date de publication
2000
Peer-reviewed
Oui
Volume
182
Numéro
15
Pages
4165-4172
Langue
anglais
Résumé
Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdD(II)C(II)E(II)F(II) and tfdB(II) (in short, the tfd(II) cluster), by analogy to tfdCDEF and tfdB (the tfd(I) cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdD(II), suggesting an operon-like organization for the tfd(II) genes. By expressing each ORF in Escherichia coli, we confirmed that tfdD(II) coded for a chloromuconate cycloisomerase, tfdC(II) coded for a chlorocatechol 1, 2-dioxygenase, tfdE(II) coded for a dienelactone hydrolase, tfdF(II) coded for a maleylacetate reductase, and tfdB(II) coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfd(I) and tfd(II) genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfd(II) genes seem to be redundant with respect to those of the tfd(I) cluster. One reason why the tfd(II) genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS.
Mots-clé
Adipates/metabolism, Base Sequence, Catechols/metabolism, Chlorophenols/metabolism, Cupriavidus necator/genetics, Cupriavidus necator/metabolism, DNA, Bacterial/chemistry, DNA, Bacterial/metabolism, Models, Chemical, Molecular Sequence Data, Multigene Family, Nucleic Acid Hybridization, Open Reading Frames, Plasmids/metabolism, RNA, Bacterial/metabolism
Pubmed
Web of science
Open Access
Oui
Création de la notice
21/01/2008 14:36
Dernière modification de la notice
20/08/2019 13:47
Données d'usage