Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo.

Détails

ID Serval
serval:BIB_17158
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo.
Périodique
Current Biology
Auteur⸱e⸱s
Drogen F., O'Rourke S.M., Stucke V.M., Jaquenoud M., Neiman A.M., Peter M.
ISSN
0960-9822
Statut éditorial
Publié
Date de publication
2000
Volume
10
Numéro
11
Pages
630-639
Langue
anglais
Résumé
BACKGROUND: Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS: Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS: Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.
Mots-clé
Cell Cycle, Crosses, Genetic, Fungal Proteins/metabolism, Glutathione Transferase/genetics, MAP Kinase Kinase Kinases/metabolism, Mitogen-Activated Protein Kinases/metabolism, Mutagenesis, Site-Directed, Phosphates/metabolism, Phosphorylation, Plasmids, Protein-Serine-Threonine Kinases/metabolism, Recombinant Fusion Proteins/metabolism, Saccharomyces cerevisiae/cytology, Saccharomyces cerevisiae/genetics, Saccharomyces cerevisiae Proteins, Signal Transduction
Pubmed
Création de la notice
19/11/2007 13:10
Dernière modification de la notice
20/08/2019 13:46
Données d'usage