Adaptive information-sharing for privacy-aware mobile social networks

Détails

Ressource 1Télécharger: Bilogrevic13UbiComp.pdf (1135.04 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_16D17F98E013
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Titre
Adaptive information-sharing for privacy-aware mobile social networks
Titre de la conférence
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)
Auteur⸱e⸱s
Bilogrevic I., Huguenin K., Agir B., Jadliwala M., Hubaux J.-P.
Editeur
ACM
Adresse
Zurich, Switzerland
ISBN
978-1-4503-1770-2
Statut éditorial
Publié
Date de publication
2013
Peer-reviewed
Oui
Pages
657-666
Langue
anglais
Résumé
Personal and contextual information are increasingly shared via mobile social networks. Users' locations, activities and their co-presence can be shared easily with online "friends", as their smartphones already access such information from embedded sensors and storage. Yet, people usually exhibit selective sharing behavior depending on contextual attributes, thus showing that privacy, utility, and usability are paramount to the success of such online services. In this paper, we present SPISM, a novel information-sharing system that decides (semi-)automatically whether to share information with others, whenever they request it, and at what granularity. Based on active machine learning and context, SPISM adapts to each user's behavior and it predicts the level of detail for each sharing decision, without revealing any personal information to a third-party. Based on a personalized survey about information sharing involving 70 participants, our results provide insight into the most influential features behind a sharing decision. Moreover, we investigate the reasons for the users' decisions and their confidence in them. We show that SPISM outperforms other kinds of global and individual policies, by achieving up to 90% of correct decisions.
Mots-clé
Information-sharing, Decision-making, Machine Learning, User study, Privacy
Création de la notice
30/11/2016 16:58
Dernière modification de la notice
20/08/2019 12:46
Données d'usage