Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_157F3074C32D
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins.
Périodique
The Plant cell
Auteur⸱e⸱s
Koh SWH, Marhava P., Rana S., Graf A., Moret B., Bassukas AEL, Zourelidou M., Kolb M., Hammes U.Z., Schwechheimer C., Hardtke C.S.
ISSN
1532-298X (Electronic)
ISSN-L
1040-4651
Statut éditorial
Publié
Date de publication
19/07/2021
Peer-reviewed
Oui
Volume
33
Numéro
6
Pages
1945-1960
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.
Mots-clé
Plant Science, Cell Biology
Pubmed
Open Access
Oui
Création de la notice
29/03/2021 12:00
Dernière modification de la notice
20/07/2022 6:37
Données d'usage