A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy.

Détails

ID Serval
serval:BIB_14DC47CDBB48
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy.
Périodique
Nature biotechnology
Auteur⸱e⸱s
Huber F., Arnaud M., Stevenson B.J., Michaux J., Benedetti F., Thevenet J., Bobisse S., Chiffelle J., Gehert T., Müller M., Pak H., Krämer A.I., Altimiras E.R., Racle J., Taillandier-Coindard M., Muehlethaler K., Auger A., Saugy D., Murgues B., Benyagoub A., Gfeller D., Laniti D.D., Kandalaft L., Rodrigo B.N., Bouchaab H., Tissot S., Coukos G., Harari A., Bassani-Sternberg M.
ISSN
1546-1696 (Electronic)
ISSN-L
1087-0156
Statut éditorial
In Press
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: aheadofprint
Résumé
The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/10/2024 8:44
Dernière modification de la notice
25/10/2024 14:57
Données d'usage