Impacts of fungus-growing termites on surficial geology parameters: A review

Détails

Ressource 1Télécharger: ESR FGT 2021.pdf (10658.95 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_1466BC86E49C
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Impacts of fungus-growing termites on surficial geology parameters: A review
Périodique
Earth-Science Reviews
Auteur⸱e⸱s
Van Thuyne John, Verrecchia Eric P.
ISSN
0012-8252
Statut éditorial
Publié
Date de publication
12/2021
Peer-reviewed
Oui
Volume
223
Pages
103862
Langue
anglais
Résumé
This review covers more than twenty-five years of research listing and discussing the biogeochemical, mineralogical, and physical impacts of fungus-growing termites (or FGT, Macrotermitinae sub-family) on savanna sediments and landscapes. The main mechanisms by which FGT transform the surficial geological formations in tropical and sub-tropical environments is investigated from a geological perspective and the potential FGT legacies in the sedimentary facies are identified. In order to sustain a twenty million-year symbiosis with the fungus, in which fungi provide digestible food to termites, FGT must optimize the living conditions of the fungus for it to thrive. To do so, they build a biogenic structure maintaining a constant humidity of 80% and a temperature of 30 °C in any kind of environment and all year long. Indeed, FGT adapt to their environment by (i) modifying the grain-size distributions of sediments and soils where they develop, (ii) forming clay horizons below their mounds enabling water to be stored for long period of time in dry environments, (iii) increasing the alkalinity by an order of magnitude of two to three, (iv) mineralizing around 20% of all organic carbon in dry savannas, thus making them the predominant decomposing organisms and crucial actors in the carbon cycle, and (v) concentrating vital nutrients for plants and animals, creating patches of fertile land in sandy semi-deserts. Through their mound-building activities, termites substantially increase the clay fraction compared to the adjacent soil and alter 2:1 clay properties, particularly after the removal of potassium, leading to the formation of smectite layers, demonstrating their biogeochemical effects on silicate mineralogy. Through the binding of aggregates, FGT increase the strength of the mound by a factor of ten and provide exceptional weathering resistance to their mounds. Therefore, termites impact their environment from sub-millimetric transformations to solid voluminous landmarks. The water-holding capacity of a FGT mound leads to an array of positive feedbacks to the savanna landscape by enhancing protection from fires, delaying desertification, supporting rebounds by seedlings and reinforcing dryland resistance and recovery from drought. Termite bioturbation allows sediments to accumulate at a rate averaging 1 mm.y−1.ha−1, and tends to mitigate physical and chemical processes of soil degradation, boosting the heterogeneity at the landscape scale, providing it more resilience. Some of the modifications brought by FGT will remain in the landscape for long periods, testifying to past environmental conditions, and making these mounds potential proxies for paleoenvironmental reconstructions. To conclude, FGT are not only biological actors of the savanna ecosystem, but they act as a geological force by their impact on landscapes as well as by their major role in biogeochemical cycles. Finally, further research is recommended regarding the role of termite's saliva as a binding agent, as well as the age and the evolution of mounds over time.
Mots-clé
Insects, Element cycle, Soils and sediments, Savanna, Micromorphology
Open Access
Oui
Financement(s)
Fonds national suisse / 200021_172944
Création de la notice
16/11/2021 17:53
Dernière modification de la notice
24/12/2022 7:44
Données d'usage