A Sparse Reconstruction Framework for Fourier-Based Plane-Wave Imaging.

Détails

ID Serval
serval:BIB_12BB8EB3AC07
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A Sparse Reconstruction Framework for Fourier-Based Plane-Wave Imaging.
Périodique
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Auteur⸱e⸱s
Besson A., Zhang M., Varray F., Liebgott H., Friboulet D., Wiaux Y., Thiran J.P., Carrillo R.E., Bernard O.
ISSN
1525-8955 (Electronic)
ISSN-L
0885-3010
Statut éditorial
Publié
Date de publication
12/2016
Peer-reviewed
Oui
Volume
63
Numéro
12
Pages
2092-2106
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Ultrafast imaging based on plane-wave (PW) insonification is an active area of research due to its capability of reaching high frame rates. Among PW imaging methods, Fourier-based approaches have demonstrated to be competitive compared with traditional delay and sum methods. Motivated by the success of compressed sensing techniques in other Fourier imaging modalities, like magnetic resonance imaging, we propose a new sparse regularization framework to reconstruct highquality ultrasound (US) images. The framework takes advantage of both the ability to formulate the imaging inverse problem in the Fourier domain and the sparsity of US images in a sparsifying domain. We show, by means of simulations, in vitro and in vivo data, that the proposed framework significantly reduces image artifacts, i.e., measurement noise and sidelobes, compared with classical methods, leading to an increase of the image quality.

Pubmed
Web of science
Création de la notice
13/02/2017 19:09
Dernière modification de la notice
20/08/2019 12:40
Données d'usage