Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation.

Détails

ID Serval
serval:BIB_10E202343736
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation.
Périodique
IEEE Transactions on bio-medical engineering
Auteur⸱e⸱s
Hu X., Nenov V., Glenn T.C., Steiner L.A., Czosnyka M., Bergsneider M., Martin N.
ISSN
0018-9294
Statut éditorial
Publié
Date de publication
2006
Peer-reviewed
Oui
Volume
53
Numéro
2
Pages
195-209
Langue
anglais
Résumé
The objective of this study was to determine whether or not the underlying physiological systems that generates spontaneous arterial blood pressure (ABP), cerebral blood flow velocity (CBFV), and intracranial pressure signals could be adequately approximated as a linear stochastic process. Furthermore, a new measure (C) capable of capturing the degree of nonlinear dependency between two ABP and CBFV signals (including a time-varying situation) was proposed for quantifying the degree of cerebral blood flow autoregulation. A surrogate data test of fifteen ABP, CBFV, and intracranial pressure (ICP) segments was conducted for detecting whether there exists a statistically significant deviation from the null hypothesis of linear signals. The extension of the established block computation method of C measure to an adaptive one was achieved. This new algorithm was then applied to study the C evolution using brain injury patients data from a hyperventilation study and two propofol studies. Nonlinearity has not been detected for all the fifteen recordings, neither has nonlinear dependency between CBFV and ABP. However, their presences in some of the signal segments justified the adoption of a nonlinear measure of dependency capable of characterizing both linear and nonlinear correlations for inferring autoregulation status. C measure started to decrease with the introduction of hypocapnia state indicating that hyperventilation may reduce the dependency of CBFV on ABP fluctuations. On the other hand, complex patterns of C measure evolution were observed among 14 cases of propofol data indicating a nontrivial effect of propofol on the dependency of CBFV on ABP.
Mots-clé
Adaptation, Physiological/physiology, Algorithms, Blood Flow Velocity/physiology, Blood Pressure/physiology, Brain/blood supply, Brain/physiology, Cerebrovascular Circulation/physiology, Computer Simulation, Feedback/physiology, Homeostasis/physiology, Humans, Intracranial Pressure/physiology, Models, Cardiovascular, Models, Neurological, Models, Statistical, Nonlinear Dynamics, Stochastic Processes
Pubmed
Web of science
Création de la notice
10/12/2009 16:40
Dernière modification de la notice
20/08/2019 13:38
Données d'usage