Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.
Détails
ID Serval
serval:BIB_0FE952F55F1F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Overcoming limitations in current measures of drug response may enable AI-driven precision oncology.
Périodique
NPJ precision oncology
ISSN
2397-768X (Print)
ISSN-L
2397-768X
Statut éditorial
Publié
Date de publication
24/04/2024
Peer-reviewed
Oui
Volume
8
Numéro
1
Pages
95
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
Machine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in precision oncology. Here, we identify a fundamental limitation in standard measures of drug sensitivity that hinders the development of personalized prediction models - they focus on absolute effects but do not capture relative differences between cancer subtypes. Our work suggests that using z-scored drug response measures mitigates these limitations and leads to meaningful predictions, opening the door for sophisticated ML precision oncology models.
Pubmed
Web of science
Open Access
Oui
Création de la notice
15/03/2025 12:27
Dernière modification de la notice
18/03/2025 8:14