First Report of a Newborn Rat Ventilation Model for Bronchopulmonary Dysplasia Permitting Evaluation of Long-Term Outcome
Détails
ID Serval
serval:BIB_0FE1C08CB997
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
First Report of a Newborn Rat Ventilation Model for Bronchopulmonary Dysplasia Permitting Evaluation of Long-Term Outcome
Titre de la conférence
25th International Workshop on Surfactant Replacement
Adresse
Moscow, June 10-12, 2010
ISBN
1661-7800
Statut éditorial
Publié
Date de publication
2010
Peer-reviewed
Oui
Volume
97
Série
Neonatology
Pages
399-400
Langue
anglais
Notes
Meeting Abstract
Résumé
Background:
Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure.
Objectives:
To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval.
Methods:
On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV.
Results:
Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression.
Conclusion:
For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.
Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure.
Objectives:
To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval.
Methods:
On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV.
Results:
Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression.
Conclusion:
For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.
Web of science
Création de la notice
30/06/2010 9:32
Dernière modification de la notice
20/08/2019 12:36