Skeletal regeneration in the brittle star Amphiura filiformis.

Détails

Ressource 1Télécharger: 27110269_BIB_0DF2817F232A.pdf (7626.96 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_0DF2817F232A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Skeletal regeneration in the brittle star Amphiura filiformis.
Périodique
Frontiers in Zoology
Auteur⸱e⸱s
Czarkwiani A., Ferrario C., Dylus D.V., Sugni M., Oliveri P.
ISSN
1742-9994 (Electronic)
ISSN-L
1742-9994
Statut éditorial
Publié
Date de publication
2016
Peer-reviewed
Oui
Volume
13
Pages
18
Langue
anglais
Résumé
BACKGROUND: Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization.
RESULTS: To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate.
CONCLUSIONS: A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars.
Pubmed
Web of science
Open Access
Oui
Création de la notice
10/05/2016 18:40
Dernière modification de la notice
29/04/2021 13:52
Données d'usage