Uniqueness of the embedding continuous convolution semigroup of a Gaussian probability measure on the affine group and an application in mathematical finance

Détails

Ressource 1Télécharger: 205.pdf (159.88 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
ID Serval
serval:BIB_0CB0D7488F91
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Uniqueness of the embedding continuous convolution semigroup of a Gaussian probability measure on the affine group and an application in mathematical finance
Périodique
Monatshefte für Mathematik
Auteur⸱e⸱s
Neuenschwander D.
ISSN
0026-9255
1436-5081
Statut éditorial
Publié
Date de publication
07/2013
Peer-reviewed
Oui
Volume
171
Numéro
1
Pages
91-101
Langue
anglais
Résumé
Let {mu((i))(t)}(t >= 0) (i = 1, 2) be continuous convolution semigroups (c.c.s.) of probability measures on Aff(1) (the affine group on the real line). Suppose that mu((1))(1) = mu((2))(1). Assume furthermore that {mu((1))(t)}(t >= 0) is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then mu((1))(1) = mu((2))(1) for all t >= 0. We end up with a possible application in mathematical finance.
Mots-clé
Continuous convolution semigroups of probability measures, Affine group, Levy processes, Brownian motion
Web of science
Open Access
Oui
Création de la notice
20/07/2017 10:10
Dernière modification de la notice
01/10/2019 6:16
Données d'usage