Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task.

Détails

ID Serval
serval:BIB_0B8D875D23C0
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task.
Périodique
Journal of Neuroscience
Auteur⸱e⸱s
Rounis E., Stephan K.E., Lee L., Siebner H.R., Pesenti A., Friston K.J., Rothwell J.C., Frackowiak R.S.
ISSN
1529-2401 (Electronic)
ISSN-L
0270-6474
Statut éditorial
Publié
Date de publication
2006
Volume
26
Numéro
38
Pages
9629-9638
Langue
anglais
Notes
Publication types: Comparative Study ; Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Résumé
Lesion and functional imaging studies in humans have suggested that the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and intraparietal sulcus (IPS) are involved in orienting attention. A functional magnetic resonance imaging study supplemented by a behavioral experiment examined the effects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) conditioning to the right and left DLPFC on reaction times and synaptic activity as indexed by changes in the blood oxygenation level-dependent (BOLD) signal during a cued choice reaction time task. Orienting precues were either correct (valid) or incorrect (invalid) with respect to the subsequent move cue. The effects of real and sham rTMS were compared for each site of stimulation. Invalid trials showed a significant increase in response times and increases in the BOLD signal in right frontal and parietal regions when compared with valid trials. Conditioning left DLPFC with rTMS led to decreased BOLD signal during performance of this reorienting task in areas including left VLPFC and left IPS. Comparing invalid to valid trials after right DLPFC conditioning revealed decreased BOLD signal in right VLPFC. Data from the behavioral study showed that right DLPFC rTMS selectively increases response times in invalid trials. This effect was only present in the first 10 min after rTMS conditioning. No effect was found in either validly or invalidly cued trials with left DLPFC conditioning. These results suggest that 5 Hz rTMS over right DLPFC exerts remote effects on the activity of areas that functionally interact with the DLPFC during attentional processes, particularly when the reorienting of attention is more demanding as in invalid trials.
Mots-clé
Adult, Conditioning (Psychology)/physiology, Cues, Female, Humans, Magnetic Resonance Imaging/methods, Male, Middle Aged, Photic Stimulation/methods, Prefrontal Cortex/physiology, Psychomotor Performance/physiology, Reaction Time/physiology, Time Factors, Transcranial Magnetic Stimulation/methods
Pubmed
Web of science
Open Access
Oui
Création de la notice
11/09/2011 18:05
Dernière modification de la notice
20/08/2019 12:33
Données d'usage