Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis.

Détails

ID Serval
serval:BIB_0968AD4A5C74
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis.
Périodique
Neuron
Auteur⸱e⸱s
Beckervordersandforth R., Ebert B., Schäffner I., Moss J., Fiebig C., Shin J., Moore D.L., Ghosh L., Trinchero M.F., Stockburger C., Friedland K., Steib K., von Wittgenstein J., Keiner S., Redecker C., Hölter S.M., Xiang W., Wurst W., Jagasia R., Schinder A.F., Ming G.L., Toni N., Jessberger S., Song H., Lie D.C.
ISSN
1097-4199 (Electronic)
ISSN-L
0896-6273
Statut éditorial
Publié
Date de publication
08/02/2017
Peer-reviewed
Oui
Volume
93
Numéro
3
Pages
560-573.e6
Langue
anglais
Notes
Publication types: Journal Article ; Video-Audio Media
Publication Status: ppublish
Résumé
Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.

Mots-clé
Adult Stem Cells/cytology, Adult Stem Cells/metabolism, Aging/metabolism, Animals, Cell Lineage, Cell Proliferation, Cells, Cultured, DNA-Binding Proteins/genetics, Electron Transport Chain Complex Proteins/metabolism, High Mobility Group Proteins/genetics, Hippocampus/cytology, Mice, Mice, Knockout, Mice, Transgenic, Mitochondria/metabolism, Neural Stem Cells, Neurogenesis, Neurons/cytology, Neurons/metabolism, Oxidative Phosphorylation, adult neurogenesis, aging, metabolism, mitochondria, stem cells
Pubmed
Web of science
Création de la notice
27/01/2017 12:30
Dernière modification de la notice
20/08/2019 13:31
Données d'usage