Effect of rufinamide on gating properties of voltage-gated sodium channel Na(v)1.7

Détails

ID Serval
serval:BIB_084A2DC86021
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Effect of rufinamide on gating properties of voltage-gated sodium channel Na(v)1.7
Titre de la conférence
Annual meeting of the Swiss Society of Anaesthesiology and Resuscitation
Auteur⸱e⸱s
Suter M.R., Abriel H., Decosterd I.
Adresse
Lausanne, Switzerland, November 4-6, 2010
ISBN
1424-7860
Statut éditorial
Publié
Date de publication
2010
Peer-reviewed
Oui
Volume
140
Série
Swiss Medical Weekly
Pages
9-10
Langue
anglais
Notes
Meeting Abstract
Résumé
Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels.
Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current.
Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed.
Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.
Web of science
Création de la notice
17/01/2011 18:04
Dernière modification de la notice
20/08/2019 13:30
Données d'usage