The Predictive Power of Transition Matrices
Détails
Télécharger: symmetry-13-02096.pdf (265.63 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_076F9F004087
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The Predictive Power of Transition Matrices
Périodique
Symmetry
ISSN
2073-8994
Statut éditorial
Publié
Date de publication
05/11/2021
Peer-reviewed
Oui
Volume
13
Numéro
11
Pages
2096
Langue
anglais
Résumé
When working with Markov chains, especially if they are of order greater than one, it is often necessary to evaluate the respective contribution of each lag of the variable under study on the present. This is particularly true when using the Mixture Transition Distribution model to approximate the true fully parameterized Markov chain. Even if it is possible to evaluate each transition matrix using a standard association measure, these measures do not allow taking into account all the available information. Therefore, in this paper, we introduce a new class of so-called "predictive power" measures for transition matrices. These measures address the shortcomings of traditional association measures, so as to allow better estimation of high-order models.
Mots-clé
Physics and Astronomy (miscellaneous), General Mathematics, Chemistry (miscellaneous), Computer Science (miscellaneous)
Web of science
Open Access
Oui
Financement(s)
Fonds national suisse / 51NF40-160590
Création de la notice
03/01/2022 13:12
Dernière modification de la notice
10/12/2022 6:53