Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.

Détails

Ressource 1Télécharger: 26779815_BIB_06D7E96E24FC.pdf (3060.63 [Ko])
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
ID Serval
serval:BIB_06D7E96E24FC
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.
Périodique
Nature Medicine
Auteur(s)
Wenger N., Moraud E.M., Gandar J., Musienko P., Capogrosso M., Baud L., Le Goff C.G., Barraud Q., Pavlova N., Dominici N., Minev I.R., Asboth L., Hirsch A., Duis S., Kreider J., Mortera A., Haverbeck O., Kraus S., Schmitz F., DiGiovanna J., van den Brand R., Bloch J., Detemple P., Lacour S.P., Bézard E., Micera S., Courtine G.
ISSN
1546-170X (Electronic)
ISSN-L
1078-8956
Statut éditorial
Publié
Date de publication
2016
Peer-reviewed
Oui
Volume
22
Numéro
2
Pages
138-145
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Mots-clé
Animals, Biomechanical Phenomena, Computer Simulation, Evoked Potentials, Motor/physiology, Feedback, Sensory/physiology, Female, Hindlimb/innervation, Hindlimb/physiopathology, Kinetics, Locomotion/physiology, Motor Neurons/physiology, Muscle, Skeletal/innervation, Muscle, Skeletal/physiopathology, Rats, Rats, Inbred Lew, Spinal Cord/physiology, Spinal Cord Injuries/pathology, Spinal Cord Injuries/physiopathology, Spinal Cord Stimulation, Spinal Nerve Roots/physiopathology, Time Factors, X-Ray Microtomography
Pubmed
Web of science
Création de la notice
01/03/2016 17:39
Dernière modification de la notice
30/04/2021 6:08
Données d'usage