Walking naturally after spinal cord injury using a brain-spine interface.
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY 4.0
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: CC BY 4.0
ID Serval
serval:BIB_029278333489
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Walking naturally after spinal cord injury using a brain-spine interface.
Périodique
Nature
ISSN
1476-4687 (Electronic)
ISSN-L
0028-0836
Statut éditorial
Publié
Date de publication
06/2023
Peer-reviewed
Oui
Volume
618
Numéro
7963
Pages
126-133
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis <sup>1,2</sup> . Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals <sup>3</sup> and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking <sup>4-6</sup> . A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.
Mots-clé
Humans, Brain/physiology, Brain-Computer Interfaces, Electric Stimulation Therapy/instrumentation, Electric Stimulation Therapy/methods, Quadriplegia/etiology, Quadriplegia/rehabilitation, Quadriplegia/therapy, Reproducibility of Results, Spinal Cord/physiology, Spinal Cord Injuries/complications, Spinal Cord Injuries/rehabilitation, Spinal Cord Injuries/therapy, Walking/physiology, Leg/physiology, Neurological Rehabilitation/instrumentation, Neurological Rehabilitation/methods, Male
Pubmed
Web of science
Open Access
Oui
Création de la notice
30/05/2023 9:24
Dernière modification de la notice
23/01/2024 7:15