In situ structural analysis of the Yersinia enterocolitica injectisome.
Détails
Télécharger: 23908767_BIB_02091A059D72.pdf (4112.49 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_02091A059D72
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
In situ structural analysis of the Yersinia enterocolitica injectisome.
Périodique
eLife
ISSN
2050-084X (Print)
ISSN-L
2050-084X
Statut éditorial
Publié
Date de publication
30/07/2013
Peer-reviewed
Oui
Volume
2
Pages
e00792
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Publication Status: epublish
Résumé
Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30-40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI:http://dx.doi.org/10.7554/eLife.00792.001.
Mots-clé
Cryoelectron Microscopy, Membrane Proteins/chemistry, Membrane Proteins/metabolism, Osmotic Pressure, Protein Conformation, Yersinia enterocolitica/metabolism, Yersinia enterocolitica, cryo-electron tomography, injectisome, molecular dynamics, other, type III secretion system, x-ray crystallography
Pubmed
Web of science
Open Access
Oui
Création de la notice
09/06/2023 15:03
Dernière modification de la notice
22/01/2024 7:22