Sex differences in brain and plasma beta-endorphin content following testosterone, dihydrotestosterone and estradiol administration to gonadectomized rats.
Détails
ID Serval
serval:BIB_0192B4DEFC8E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Sex differences in brain and plasma beta-endorphin content following testosterone, dihydrotestosterone and estradiol administration to gonadectomized rats.
Périodique
Neuroendocrinology
ISSN
1423-0194 (Electronic)
ISSN-L
0028-3835
Statut éditorial
Publié
Date de publication
2009
Peer-reviewed
Oui
Volume
89
Numéro
4
Pages
411-423
Langue
anglais
Notes
Publication types: Comparative Study ; Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
The present study aims at evaluating the effect of a 2-week treatment with testosterone (T), dihydrotestosterone (DHT) and estradiol valerate (E(2)V) on brain and plasma beta-endorphin (beta-END) concentrations in gonadectomized rats of both sexes.
Eight groups of female and 8 groups of male Wistar rats were included. For each sex, 1 group of gonad-intact and 1 group of gonadectomized rats were employed as controls (placebo). The other groups received subcutaneous T at the doses of 10 and 100 microg/kg/day (female rats) or 1 and 5 mg/kg/day (male rats). Subcutaneous DHT was administered at the doses of 1, 10, 100 microg/kg/day (female rats) or 0.1, 1 and 5 mg/kg/day (male rats). E(2)V was administered subcutaneously at 0.05 mg/kg/day. beta-END levels were measured in different brain areas and plasma.
Ovariectomy (OVX) induced a significant decrease in beta-END in all brain areas analyzed as well as in plasma. Orchidectomy (OCX) reduced opioid concentration in the hypothalamus, anterior pituitary and neurointermediate lobe. In OVX rats, T replacement as well as E(2)V significantly increased beta-END concentration in all brain areas and in plasma. In the OCX group, T and E(2)V did not influence beta-END concentrations in different hypothalamic areas. However, they produced a significant rise in beta-END levels in the hypothalamus, neurointermediate lobe, anterior pituitary and plasma. Conversely, DHT replacement did not affect beta-END levels at any dose administered, either in males or females.
The sensitivity of the endogenous opiatergic system to T administration seems to be sex-related. This effect is particularly evident in the brains of female animals where this endogenous endorphin elicits a much greater response than it does in males that have undergone gonadal steroid depletion and subsequent T replacement.
Eight groups of female and 8 groups of male Wistar rats were included. For each sex, 1 group of gonad-intact and 1 group of gonadectomized rats were employed as controls (placebo). The other groups received subcutaneous T at the doses of 10 and 100 microg/kg/day (female rats) or 1 and 5 mg/kg/day (male rats). Subcutaneous DHT was administered at the doses of 1, 10, 100 microg/kg/day (female rats) or 0.1, 1 and 5 mg/kg/day (male rats). E(2)V was administered subcutaneously at 0.05 mg/kg/day. beta-END levels were measured in different brain areas and plasma.
Ovariectomy (OVX) induced a significant decrease in beta-END in all brain areas analyzed as well as in plasma. Orchidectomy (OCX) reduced opioid concentration in the hypothalamus, anterior pituitary and neurointermediate lobe. In OVX rats, T replacement as well as E(2)V significantly increased beta-END concentration in all brain areas and in plasma. In the OCX group, T and E(2)V did not influence beta-END concentrations in different hypothalamic areas. However, they produced a significant rise in beta-END levels in the hypothalamus, neurointermediate lobe, anterior pituitary and plasma. Conversely, DHT replacement did not affect beta-END levels at any dose administered, either in males or females.
The sensitivity of the endogenous opiatergic system to T administration seems to be sex-related. This effect is particularly evident in the brains of female animals where this endogenous endorphin elicits a much greater response than it does in males that have undergone gonadal steroid depletion and subsequent T replacement.
Mots-clé
Animals, Brain/drug effects, Brain/metabolism, Dihydrotestosterone/administration & dosage, Estradiol/administration & dosage, Female, Male, Orchiectomy, Ovariectomy, Rats, Rats, Wistar, Sex Characteristics, Testosterone/administration & dosage, beta-Endorphin/blood, beta-Endorphin/metabolism
Pubmed
Web of science
Création de la notice
15/09/2023 12:24
Dernière modification de la notice
27/09/2023 9:50