Extracorporeal membrane oxygenation support after heart explantation: a proposal on how to deal with hyperacute rejection of heart transplant

Détails

ID Serval
serval:BIB_00EA280F4233
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Extracorporeal membrane oxygenation support after heart explantation: a proposal on how to deal with hyperacute rejection of heart transplant
Titre de la conférence
Congress of the European-Society-of-Cardiology (ESC)
Auteur⸱e⸱s
Marinakis S., Ferrari E., Tozzi P., Ruchat P., Delay D., Berdajs D., Roumy A., Burki M., Apolinario J. Pinheiro , Von Segesser L. K.
Adresse
Aug 25-29, 2012; Munchen, Germany
ISBN
0195-668X
ISSN-L
0195-668X
Statut éditorial
Publié
Date de publication
2012
Volume
33
Série
European Heart Journal
Pages
1097
Langue
anglais
Résumé
Purpose: In extreme situations, such as hyperacute rejection of heart transplant or major bleeding per-operating complications, an urgent heart explantation might be the only means of survival. The aim of this experimental study was to improve the surgical technique and the hemodynamics of an Extracorporeal Membrane Oxygenation (ECMO) support through a peripheral vascular access in an acardia model.
Methods: An ECMO support was established in 7 bovine experiments (59±6.1 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with return through a carotid artery. After baseline measurements of pump flow and arterial and central venous pressure, ventricular fibrillation was induced (B), the great arteries were clamped, the heart was excised and right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect (ASD) over the cannula in the caval axis. Measurements were taken with the pulmonary artery (PA) clamped (C) and anastomosed with the caval axis (D). Regular arterial and central venous blood gases tests were performed. The ANOVA test for repeated measures was used to test the null hypothesis and a Bonferroni t method for assessing the significance in the between groups pairwise comparison of mean pump flow.
Results: Initial pump flow (A) was 4.3±0.6 L/min dropping to 2.8±0.7 L/min (P B-A= 0.003) 10 minutes after induction of ventricular fibrillation (B). After cardiectomy, with the pulmonary artery clamped (C) it augmented not significantly to 3.5±0.8 L/min (P C-B= 0.33, P C-A= 0.029). Finally, PA anastomosis to the caval axis was followed by an almost to baseline pump flow augmentation (4.1±0.7 L/min, P D-B= 0.009, P D-C= 0.006, P D-A= 0.597), permitting a full ECMO support in acardia by a peripheral vascular access.
Conclusions: ECMO support in acardia is feasible, providing new opportunities in situations where heart must urgently be explanted, as in hyperacute rejection of heart transplant. Adequate drainage of pulmonary circulation is pivotal in order to avoid pulmonary congestion and loss of volume from the normal right to left shunt of bronchial vessels. Furthermore, the PA anastomosis to the caval axis not only improves pump flow but it also permits an ECMO support by a peripheral vascular access and the closure of the chest.
Web of science
Création de la notice
17/12/2012 11:18
Dernière modification de la notice
20/08/2019 12:23
Données d'usage