Development of a hepatocyte hollow fiber bioreactor for the study of contrast agents by magnetic resonance imaging

Details

Ressource 1 Sous embargo indéterminé.
State: Public
Version: After imprimatur
License: Not specified
Serval ID
serval:BIB_R_496
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Development of a hepatocyte hollow fiber bioreactor for the study of contrast agents by magnetic resonance imaging
Author(s)
Planchamp Messeiller C.
Director(s)
Testa B.
Institution details
Université de Lausanne, Faculté des sciences
Address
Décanat Géosciences, Collège Propédeutique 1, 1015 Lausanne
Publication state
Accepted
Issued date
2002
Language
english
Abstract
Thanks to the continuous progress made in recent years, medical imaging has become an important tool in the diagnosis of various pathologies. In particular, magnetic resonance imaging (MRI) permits to obtain images with a remarkably high resolution without the use of ionizing radiation and is consequently widely applied for a broad range of conditions in all parts of the body. Contrast agents are used in MRI to improve tissue discrimination. Different categories of contrast agents are clinically available, the most widely used being gadolinium chelates. One can distinguish between extracellular gadolinium chelates such as Gd-DTPA, and hepatobiliary gadolinium chelates such as Gd-BOPTA. The latter are able to enter hepatocytes from where they are partially excreted into the bile to an extent dependent on the contrast agent and animal species. Due to this property, hepatobiliary contrast agents are particularly interesting for the MRI of the liver. Actually, a change in signal intensity can result from a change in transport functions signaling the presence of impaired hepatocytes, e.g. in the case of focal (like cancer) or diffuse (like cirrhosis) liver diseases. Although the excretion mechanism into the bile is well known, the uptake mechanisms of hepatobiliary contrast agents into hepatocytes are still not completely understood and several hypotheses have been proposed. As a good knowledge of these transport mechanisms is required to allow an efficient diagnosis by MRI of the functional state of the liver, more fundamental research is needed and an efficient MRI compatible in vitro model would be an asset. So far, most data concerning these transport mechanisms have been obtained by MRI with in vivo models or by a method of detection other than MRI with cellular or sub-cellular models. Actually, no in vitro model is currently available for the study and quantification of contrast agents by MRI notably because high cellular densities are needed to allow detection, and no metallic devices can be used inside the magnet room, which is incompatible with most tissue or cell cultures that require controlled temperature and oxygenation. The aim of this thesis is thus to develop an MRI compatible in vitro cellular model to study the transport of hepatobiliary contrast agents, in particular Gd-BOPTA, into hepatocytes directly by MRI. A better understanding of this transport and especially of its modification in case of hepatic disorder could permit in a second step to extrapolate this knowledge to humans and to use the kinetics of hepatobiliary contrast agents as a tool for the diagnosis of hepatic diseases.
Create date
09/12/2009 11:50
Last modification date
30/05/2020 6:18
Usage data