In vivo functional and myeloarchitectonic mapping of human primary auditory areas.

Details

Ressource 1Download: BIB_FA0F62148D1A.P001.pdf (3345.37 [Ko])
State: Serval
Version: author
Serval ID
serval:BIB_FA0F62148D1A
Type
Article: article from journal or magazin.
Collection
Publications
Title
In vivo functional and myeloarchitectonic mapping of human primary auditory areas.
Journal
Journal of Neuroscience
Author(s)
Dick F., Tierney A.T., Lutti A., Josephs O., Sereno M.I., Weiskopf N.
ISSN
1529-2401 (Electronic)
ISSN-L
0270-6474
Publication state
Published
Issued date
2012
Volume
32
Number
46
Pages
16095-16105
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with postmortem cyto- or myeloarchitectonics from the same individual. We combined high-resolution (800 μm) quantitative T(1) mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the "auditory core" of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to postmortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two "mirror-image" tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that these two maps within the core are the human analogs of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multimodal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies.
Keywords
Acoustic Stimulation, Adult, Auditory Cortex/anatomy & histology, Auditory Cortex/physiology, Brain Mapping, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Models, Neurological, Models, Statistical, Whole Body Imaging, Young Adult
Pubmed
Web of science
Open Access
Yes
Create date
08/07/2013 10:22
Last modification date
09/05/2019 3:46
Usage data