An Application of Extreme Value Theory to Learning Analytics: Predicting Collaboration Outcome from Eye-tracking Data

Details

Serval ID
serval:BIB_F9EC38E0EAC3
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
An Application of Extreme Value Theory to Learning Analytics: Predicting Collaboration Outcome from Eye-tracking Data
Journal
Journal of Learning Analytics
Author(s)
Sharma K., Chavez-Demoulin V., Dillenbourg P.
ISSN
1929-7750
Publication state
Published
Issued date
03/12/2017
Peer-reviewed
Oui
Volume
4
Number
3
Pages
140-164
Language
english
Abstract
The statistics used in education research are based on central trends such as the mean or standard deviation, discarding outliers. This paper adopts another viewpoint that has emerged in Statistics, called the Extreme Value Theory (EVT). EVT claims that the bulk of the normal distribution is mostly comprised of uninteresting variations while the most extreme values convey more information. We applied EVT to eye-tracking data collected during online collaborative problem solving with the aim of predicting the quality of collaboration. We compare our previous approach, based on central trends, with an EVT approach focused on extreme episodes of collaboration. The latter occurred to provide a better prediction of the quality of collaboration.
Keywords
Eye-tracking, Dual eye-tracking, Extreme value theory, Computer Supported Collaborative learning, Learning Analytics, Collaboration quality
Open Access
Yes
Create date
12/03/2017 10:46
Last modification date
20/08/2019 16:25
Usage data