Hypercapnie controlee: une nouvelle strategie dans le traitement de l'insuffisance respiratoire grave. [Controlled hypercapnia: a new strategy in the treatment of severe respiratory insufficiency]

Details

Serval ID
serval:BIB_F889AEBC6571
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Hypercapnie controlee: une nouvelle strategie dans le traitement de l'insuffisance respiratoire grave. [Controlled hypercapnia: a new strategy in the treatment of severe respiratory insufficiency]
Journal
Bulletin de l'Academie Nationale de Médecine
Author(s)
Perret  C., Feihl  F.
ISSN
0001-4079 (Print)
Publication state
Published
Issued date
01/1995
Volume
179
Number
1
Pages
185-95; discussion 195-7
Notes
English Abstract
Journal Article
Review --- Old month value: Jan
Abstract
Permissive hypercapnia (PHY) represents an interesting approach in critically ill ventilated patients, because it allows to ensure adequate gas exchange while avoiding the adverse effects related to excessive airway pressures. Its objective is to improve oxygenation while reducing the risk of barotrauma and circulatory impairment. This concept is all the more important when considering that in majority of lung diseases for which MV is applied, lung involvement is highly inhomogeneous, meaning that the functionally normal or near normal areas are the most exposed to the deleterious effects of overdistension. Undesired physiological effects of non massive respiratory acidosis (PaCO2 < or = 80 mmHg, arterial pH > or = 7.15) are reversible and mostly minor. This good tolerance legitimizes two strategies: firstly to accept hypercapnia in conditions such as acute severe asthma for which enforced normalization of PaCO2 would imply potentially lethal complications, and secondly to deliberately induce respiratory acidosis while using very low airway pressures and alveolar ventilation to limit or prevent overdistension lung damage in injured as well as in normal areas. When the cerebral vasodilation induced by CO2 might aggravate a preexisting intracranial disorder, PHY is obviously contraindicated.
Keywords
Humans Hypercapnia/*physiopathology Respiration, Artificial/*methods Respiratory Insufficiency/physiopathology/*therapy
Pubmed
Web of science
Create date
25/01/2008 10:38
Last modification date
20/08/2019 17:24
Usage data