Effects of colonization asymmetries on metapopulation persistence.

Details

Ressource 1Request a copy Sous embargo indéterminé.
State: Public
Version: author
Serval ID
serval:BIB_F68251763771
Type
Article: article from journal or magazin.
Collection
Publications
Title
Effects of colonization asymmetries on metapopulation persistence.
Journal
Theoretical Population Biology
Author(s)
Vuilleumier S., Bolker B.M., Lévêque O.
ISSN
1096-0325 (Electronic)
ISSN-L
0040-5809
Publication state
Published
Issued date
2010
Peer-reviewed
Oui
Volume
78
Number
3
Pages
225-238
Language
english
Abstract
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.
Keywords
Computer Simulation, Ecosystem, Gene Flow/genetics, Genetic Drift, Humans, Markov Chains, Models, Genetic, Models, Statistical, Population Dynamics
Pubmed
Web of science
Create date
05/07/2010 12:53
Last modification date
20/08/2019 17:22
Usage data