Free-breathing T2 mapping at 3T for the monitoring of cardiac allograft rejection: initial results

Details

Serval ID
serval:BIB_F66D516683DE
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Poster: Summary – with images – on one page of the results of a researche project. The summaries of the poster must be entered in "Abstract" and not "Poster".
Collection
Publications
Title
Free-breathing T2 mapping at 3T for the monitoring of cardiac allograft rejection: initial results
Title of the conference
17th Annual SCMR Scientific Sessions, Society for Cardiovascular Magnetic Resonance
Author(s)
van Heeswijk RB, Vincenti G., Monney P., Kourda J., Rotman S., Stuber M., Schwitter J., Hullin R.
Address
New Orleans, United States, 16-19 January 2014
ISBN
1097-6647
Publication state
Published
Issued date
2014
Volume
16
Series
Journal of Cardiovascular Magnetic Resonance
Pages
8
Language
english
Abstract
rejection can lead to loss of function. Histological reading of endomyocardial biopsy remains the "gold standard" for guiding immunosuppression, despite its methodological limitations (sampling error and interobserver variability). The measurement of the T2 relaxation time has been suggested for detection of allograft rejection, on the pathophysiological basis that the T2 relaxation time prolongs with local edema resulting from acute allograft rejection. Using breath-held cardiac magnetic resonance T2 mapping at 1.5 T, Usman et al. (CircCardiovascImaging2012) detected moderate allograft rejection (grade 2R, ISHLT 2004). With modern immunosuppression grade 2R rejection has become a rare event, but the need remains for a technique that permits the discrimination of absent (grade 0R) and mild rejection (grade 1R). We therefore investigated whether an increase of magnetic field strength to 3T and the use of real-time navigator-gated respiration compensation allow for an increase in the sensitivity of T2 relaxation time detection that is necessary to achieve this discrimination.
Methods: Eighteen patients received EMB (Tan et al., ArchPatholLabMed2007) and cardiac T2 mapping on the same day. Reading of T2 maps was blinded to the histological results. For final analysis, 3 cases with known 2R rejection at the time of T2 mapping were added, yielding 21 T2 mapping sessions. A respiration-navigator-gated radial gradient-recalled-echo pulse sequence (resolution 1.17 mm2, matrix 2562, trigger time 3 heartbeats, T2 preparation duration TET2 Prep = 60/30/0 ms) was applied to obtain 3 short-axis T2 maps (van Heeswijk et al., JACCCardiovascImaging2012), which were segmented according to AHA guidelines (Cerqueira et al, Circulation2001). The highest segmental T2 values were grouped according to histological rejection grade and differences were analyzed by Student's t-test, except for the non-blinded cases with 2R rejection. The degree of discrimination was determined using the Spearman's ranked correlation test.
Results: The high-quality T2 maps allowed for visual differentiation of the rejection degrees (Figure 1), and the correlation of T2 mapping with the histological grade of acute cellular rejection was significant (Spearman's r = 0.56, p = 0.007). The 0R (n = 15) and 1R (n = 3) degrees demonstrated significantly different T2 values (46.9 ± 5.0 and 54.3 ± 3.0 ms, p = 0.02, Figure 2). Cases with 2R rejection showed clear T2 elevation (T2 = 60.3 ± 16.2 ms).
Conclusions: This pilot study demonstrates that non-invasive free-breathing cardiac T2 mapping at 3T discriminates between no and mild cardiac allograft rejection. Confirmation of these encouraging results in a larger cohort should consider a study able to show equivalency or superiority of T2 mapping.
Create date
14/07/2014 9:48
Last modification date
20/08/2019 16:22
Usage data