Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs.

Details

Ressource 1Download: journal.pcbi.1005274.pdf (1686.49 [Ko])
State: Public
Version: Final published version
Serval ID
serval:BIB_F27D450F2B07
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs.
Journal
PLoS Computational Biology
Author(s)
Kryuchkova-Mostacci N., Robinson-Rechavi M.
ISSN
1553-7358 (Electronic)
ISSN-L
1553-734X
Publication state
Published
Issued date
2016
Peer-reviewed
Oui
Volume
12
Number
12
Pages
e1005274
Language
english
Abstract
The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years.

Pubmed
Web of science
Open Access
Yes
Create date
03/01/2017 18:47
Last modification date
20/08/2019 17:19
Usage data